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Abstract. Low bottom water dissolved oxygen conditions
(hypoxia) occur almost every summer in the northern Gulf
of Mexico due to a combination of nutrient loadings and wa-
ter column stratification. Several statistical and mechanistic
models have been used to forecast the midsummer hypoxic
area, based on spring nitrogen loading from major rivers.
However, sub-seasonal forecasts are needed to fully char-
acterize the dynamics of hypoxia over the summer season,
which is important for informing fisheries and ecosystem
management. Here, we present an approach to forecasting
hypoxic conditions at a daily resolution through Bayesian
mechanistic modeling that allows for rigorous uncertainty
quantification. Within this framework, we develop and test
different representations and projections of hydrometeoro-
logical model inputs. We find that May precipitation over
the Mississippi River basin is a key predictor of summer dis-
charge and loading that substantially improves forecast per-
formance. Accounting for spring wind conditions also im-
proves forecast performance, though to a lesser extent. The
proposed approach generates forecasts for two different sec-
tions of the Louisiana–Texas shelf (east and west), and it ex-
plains about 50 % of the variability in the total hypoxic area
when tested against historical observations (1985–2016). Re-
sults also show how forecast uncertainties build over the
summer season, with longer lead times from the nominal
forecast release date of 1 June, due to increasing stochasticity
in riverine and meteorological inputs. Consequently, the por-
tion of overall forecast variance associated with uncertainties
in data inputs increases from 26 % to 41 % from June–July to
August–September, respectively. Overall, the study demon-
strates a unique approach to assessing and reducing uncer-
tainties in temporally resolved hypoxia forecasting.

1 Introduction

The northern Gulf of Mexico has one of the largest hypoxic
zones in the world, forming virtually every summer over the
last 3 decades (Rabalais and Turner, 2019). Hypoxic, or dead,
zones occur when dissolved oxygen concentrations fall be-
low critical thresholds (e.g., 2 mgL−1), threatening aquatic
ecosystems (Craig, 2012; Craig and Crowder, 2005; Thron-
son and Quigg, 2008), fisheries (Purcell et al., 2017; Smith
et al., 2017), and coastal economies (Díaz and Rosenberg,
2011). The two major causes of hypoxia in the Gulf are wa-
ter column stratification and nutrient loadings (Krug, 2007;
Obenour et al., 2012; Rabalais et al., 2002), which are both
influenced by Mississippi and Atchafalaya river discharges.
Additionally, wind controls both the structure of the river
plume (Hetland, 2005) and the rates of oxygen supply to the
water column (Fennel et al., 2013; Justić et al., 1996). Over-
all, a complex combination of biophysical factors, including
long-term accumulation of organic matter (Del Giudice et al.,
2020; Turner et al., 2008) and short-term events like storms
and droughts (Bianchi et al., 2010), control hypoxia dynam-
ics in the northern Gulf.

Mathematical models are useful for elucidating important
relationships between hypoxia and environmental drivers and
for evaluating the consequences of possible actions to im-
prove water quality (Justić and Rose, 2017). The approaches
developed to predict hypoxia in the Gulf of Mexico included
statistical regressions (Forrest et al., 2011; Greene et al.,
2009; Turner et al., 2012) and both parsimonious (Obenour
et al., 2015; Scavia et al., 2013) and complex (Justić and
Wang, 2014; Yu et al., 2015) mechanistic models. Among
these alternatives, parsimonious process-based models at-
tempt to balance biophysical detail with computational ef-
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Figure 1. Map of the study area located in the northern Gulf of Mexico. The Mississippi and Atchafalaya river basin (top left; light blue
filled) is used to estimate monthly precipitation and temperature. Dashed gray lines indicate isobaths (meters).

ficiency and resilience to overfitting. When embedded in a
Bayesian framework, these models describe eutrophication
processes and hypoxia formation while enabling data-driven
parameter estimation and rigorous uncertainty analysis (Mé-
nesguen and Lacroix, 2018). The latter is especially impor-
tant for assessing our confidence in the potential outcomes of
environmental change and management decisions (Reichert
and Borsuk, 2005; Schuwirth et al., 2019).

Currently, a probabilistic ensemble of four models is used
to inform stakeholders and fishery managers about the ex-
pected extent of the northern Gulf hypoxic zone (Scavia
et al., 2017). This ensemble provides predictions with esti-
mates of uncertainty of the midsummer hypoxic area (HA).
However, the forecast lacks dynamic oxygen predictions over
the summer season. The lack of subseasonal information on
dissolved oxygen variability has been identified as an impor-
tant limitation in understanding how hypoxia affects fisheries
in the region, which occurs primarily during the summer sea-
son but are highly dynamic in space and time (Langseth et al.,
2016; Purcell et al., 2017; Smith et al., 2014). Laurent and
Fennel (2019) used a weighted aggregation of seasonal hind-
casts generated by a three-dimensional model to produce spa-
tially and temporally resolved seasonal hypoxia forecasts but
without accounting for uncertainties related to the model pa-
rameterization (Mattern et al., 2013). Furthermore, the afore-
mentioned forecasting approaches are informed only by ob-
served spring nutrient loading, without considering variabil-
ity in spring wind conditions (Obenour et al., 2015) or pro-
jected summer river discharge and loading.

Here, we use an existing mechanistic model, calibrated
within a Bayesian inference framework, to forecast the tem-
poral dynamics of hypoxia in the northern Gulf over the sum-
mer season. The model was initially developed by Obenour
et al. (2015) and later enhanced by Del Giudice et al. (2020;

hereafter referred to as DMO20). While the model performed
well in hindcasting, its ability to forecast hypoxia forward
in time has not been explored. In order to provide sufficient
lead time for environmental planning and fisheries manage-
ment, we produce a June–September hypoxia forecast based
on data available at the end of May. The main objectives of
this study are to (a) develop daily forecasted spatial mean
bottom water dissolved oxygen (BWDO) concentrations and
HA estimates for targeted portions of the Louisiana–Texas
shelf with accompanying measures of uncertainty, (b) under-
stand the major sources of forecast uncertainty, (c) charac-
terize how forecast accuracy degrades over time, and (d) ex-
plore how different applications of spring–summer riverine
and meteorological data influence forecast performance.

2 Methods

We first outline the underlying model and required data in-
puts. Next, we describe the proposed forecasting procedure,
along with regression models, to project discharge and ni-
trogen loading over the summer. Third, we describe the ap-
proach to evaluating the BWDO and HA forecast perfor-
mance and analyze how the forecast varies in relation to al-
ternative combinations of data inputs.

2.1 Bayesian mechanistic model and bias adjustment

The hypoxia forecast is based on the model described in
DMO20, which has a parsimonious, mechanistic formulation
and coarse spatial resolution. Specifically, the model repre-
sents the Louisiana–Texas shelf from Galveston Bay to the
Mississippi River delta, which has been divided into four
compartments. The western and eastern sections are sepa-
rated at the Atchafalaya River mouth (Fig. 1), while the wa-
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Figure 2. Flowchart summarizing processes and inputs required to generate the hypoxia hindcast (a) and pseudo-forecast (b) for a given
year. Parallelograms represent data inputs and Bayesian posterior parameter distributions. Rectangles represent forecasting computations,
and squares with bell-shaped curves indicate steps that propagate uncertainty (including stochastic hydrometeorology).

ter column of each section is divided by the pycnocline into
two layers, assuming that the discharge and nutrient loadings
are transported within the top layer. Additionally, the wind
speed and direction control the distribution of flow and load-
ings between the eastern and western sections and the rate
of reoxygenation across the pycnocline. The biogeochem-
istry is based on the transformation of bioavailable nitrogen
(sum of nitrate, nitrite, ammonia, and 12 % organic nitrogen;
Obenour et al., 2015) into organic matter, which settles to
the bottom layer and is subject to aerobic decomposition.
BWDO is depleted due to both near- and long-term oxygen
demands, reflecting the effects of nitrogen loadings over dif-
ferent timescales. Therefore, the model uses both recent in-
puts of daily discharge, loading, and wind (up to 90 d before
the date of prediction) and long-term November–March load-
ing. In addition, the Bayesian calibration framework provides
systematic estimation of model parameters and their uncer-
tainties (Table S1 in the Supplement). All major equations
of DMO20, including regressions to convert BWDO to HA,
are presented in Sect. S1 in the Supplement. Estimates of
BWDO and HA generated by DMO20, using known nutrient

and hydrometeorological inputs throughout the summer, are
hereinafter referred to as hindcasts (Fig. 2a).

Prior to developing the daily forecast, we examined
DMO20 hindcasts for systematic biases during specific
months and found that estimated BWDO was (0 %–20 %)
lower than observations for the western section of the shelf in
June. However, this discrepancy diminished towards the end
of the month (Sect. S2). This apparent bias, which could be
due to an overestimation of June oxygen demands or other
structural limitations within DMO20, was corrected using a
linear regression, with the day number (June 1 to June 30)
as a predictor and the BWDO adjustment as the response
(Fig. S2.1). This adjustment factor was applied to all June
model predictions (hindcasts and forecasts), unless otherwise
indicated.

2.2 Data

The forecast utilized the same observational data inputs de-
scribed in DMO20, including monthly discharge and nitro-
gen loading from the U.S. Geological Survey (USGS, 2019),
daily discharge from the U.S. Army Corps of Engineers
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at Simmesport and Tarbert Landing (USACE, 2019), and
wind velocities from the National Data Buoy Center (NDBC,
2019). Additionally, monthly precipitation and temperature
were obtained from gridded data for the Mississippi River
basin (Hart and Bell, 2015; Schwartz, 2012). For both shelf
sections, estimates of mean BWDO and HA with associ-
ated uncertainties were obtained using the space–time geo-
statistical model of Matli et al. (2018). This model relies
on BWDO samples from ship-based monitoring cruises, and
similar to DMO20, we only used the geostatistical estimates
corresponding to times of these cruises (when uncertainty is
typically lowest). At least one monitoring cruise was con-
ducted for every year of the study period (1985–2016), and
there were a total of 149 cruises (34 in June, 63 in July, 35 in
August, and 17 in September).

2.3 Forecast procedure

To capture the uncertainty in hydrometeorology, nutrient
loading, model parameters, and residual error, the forecast
for a given year was determined through 1000 Monte Carlo
simulations (Fig. 2b) implemented in R (R Core Team,
2019). Each simulation included a random draw from the
Bayesian joint posterior parameter and error distribution of
the mechanistic model (DMO20) and the uncertainty in the
regressions for bias correction and for converting BWDO to
HA. The simulations used actual November–May riverine
and meteorological inputs for the forecast year, since these
inputs would be known by the nominal forecast release date
of 1 June. However, summer (June–September) inputs were
sampled from historical records of multiple years (always
omitting the forecast year). To retain the temporal correla-
tion in these inputs, data were sampled in blocks (i.e., the
complete daily time series for each summer). As wind con-
ditions cannot be accurately forecasted beyond 10 d (Zhang
et al., 2019), summer wind velocity data were sampled from
the complete historical record (1985–2016).

Summer riverine inputs can potentially be projected in ad-
vance through regression (Sect. 2.4). Thus, riverine time se-
ries were sampled from only the 10 most relevant historical
years. For each historical year, relevancy to the forecast year
was determined by computing the differences between the
summer historical records and the regression-projected dis-
charge and bioavailable nitrogen loading (Sect. 2.4). Monthly
projections and observations were standardized, based on the
mean and standard deviation of the historical data for each
summer month, so that the differences in loading and flow
could be combined on the same unitless scale. The 10 years
with the smallest aggregated differences were selected as the
relevant years for use in the Monte Carlo simulations.

2.4 Regressions for June–September discharge and
loading

Regression modeling was used to project riverine inputs,
which were employed to constrain the historical records used
in the Monte Carlo simulations to relevant years (Sect. 2.3;
Fig. 2b). June, July, August, and September river discharge
(QA for Atchafalaya and QM for Mississippi, m3 s−1) and
bioavailable nitrogen loading (LA and LM, Tmo−1) were
estimated through multiple linear regression. The candi-
date predictor variables (predictors) included the monthly
(January–May) and 4-month average (January–April) dis-
charge, loading, total river basin precipitation (P ; cm), and
river basin temperature (T ; ◦C). Response variables were
square root transformed to account for the skewness of their
distributions and comply with the error normality assump-
tion for linear regression (Faraway, 2015). Predictors for each
model were selected using the Bayesian information crite-
rion (BIC) through an exhaustive search (Lumley, 2017).
BIC prioritizes models based on log likelihood while pe-
nalizing for the number of parameters to prevent overfit-
ting (Faraway, 2015). The performance of the regression
was measured by the coefficient of determination, R2, in
the square-root-transformed space. If any of the 16 regres-
sions had R2 < 30 %, then the associated month and vari-
able was excluded from determining relevant years for hy-
poxia forecasting (Sect. 2.3). To further check the valid-
ity of these regressions, we performed leave-one-out cross-
validation (LOOCV), where we excluded the years one by
one, calibrated the models to the reduced dataset, and pre-
dicted the values for the excluded year. Cross-validation is
commonly used to evaluate the ability of models to predict
out of sample and to prevent overfitting (Berrar, 2019).

2.5 Forecast assessment

The forecasting approach was applied to the complete histor-
ical record (1985–2016, excluding the summer input data of
the forecast year from the Monte Carlo simulation). This ret-
rospective forecast (i.e., pseudo-forecast) performance was
evaluated through comparison of the daily forecasted values
with both hindcasted (generated by DMO20) and geostatisti-
cally estimated (referred to as observed, for brevity) BWDO
and HA for the two shelf sections. The approach also al-
lowed for the determination of the 95 % interquartile ranges
(IQR) of the pseudo-forecasts, accounting for uncertainties in
parameters, model residuals, BWDO to HA transformation,
and bias adjustment, as well as the stochasticity in riverine
and meteorological inputs (Sect. 2.3).

We also assessed how the inclusion of various hydromete-
orological inputs affected the pseudo-forecast accuracy and
uncertainty. Specifically, we compared four cases with dif-
ferent types of spring–summer wind and summer riverine
data. Case 1 included summer riverine and spring–summer
wind records randomly sampled from the complete histori-
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Table 1. Regressions for monthly Atchafalaya and Mississippi river discharge (QA and QM, m3 s−1) and bioavailable nitrogen loading (LA
and LM; Mgmo−1). Variable subscript numbers represent months. For example, P1:4 represents average Mississippi River basin precipitation
for January–April. R2 values are presented for the model calibrated to all data and for the leave-one-out cross-validation (LOOCV). Bold
R2 values (> 0.30) indicate models used for selection of relevant years in hypoxia forecasting.

Regression R2 LOOCV R2

A
tc

ha
fa

la
ya

√
QA6 = 19.45+ 2.55× 10−3

×QA5+ 0.18×P5 0.79 0.75
√

QA7 = 8.20+ 0.54×P1:4+ 0.15×P5 0.47 0.38
√

QA8 = 33.69+ 1.06× 10−3
×QA5+ 0.08×P5 0.28 0.14

√
QA9 = 63.15+ 2.61× T1:4 0.13 0.04
√

LA6 = 35.86+ 1.57× 10−3
×LA5+ 0.32×P5 0.76 0.71

√
LA7 = 54.44+ 1.17× 10−3

×LA5+ 0.21×P5 0.51 0.41
√

LA8 = 72.82+ 1.22× 10−3
×LA5 0.30 0.17

√
LA9 = 73.61+ 0.56× 10−3

×LA5 0.11 −0.02

M
is

si
ss

ip
pi

√
QM6 = 31.63+ 1.66× 10−3

×QM5+ 0.27×P5 0.77 0.73
√

QM7 = 49.01+ 0.73× 10−3
×QM5+ 0.20×P5 0.48 0.38

√
QM8 = 53.11+ 0.69× 10−3

×QM5+ 0.11×P5 0.28 0.15
√

QM9 = 97.19+ 3.81× T1:4 0.13 0.04
√

LM6 = 32.42+ 0.92× 10−3
×LM5+ 0.65×P5 0.78 0.74

√
LM7 = 44.85+ 0.65× 10−3

×LM5+ 0.55×P5 0.51 0.41
√

LM8 = 50.87+ 0.52× 10−3
×LM5+ 0.31×P5 0.25 0.12

√
LM9 = 92.39+ 0.23×P5 0.09 0.01

cal data (thus, they are treated as unknown, consistent with
conventional Gulf forecasting approaches). Case 2 was sim-
ilar to Case 1, except that it included actual spring wind
data (to 31 May). Case 3 was also similar to Case 1, ex-
cept that it used summer riverine records sampled from only
the 10 most relevant historical years, as determined from the
regression projections (Sect. 2.4). Finally, Case 4 (our pro-
posed approach; Fig. 2b) used both actual spring wind data
and riverine records from the 10 most relevant years.

3 Results and discussion

3.1 Monthly discharge and loading projections

Multiple linear regressions predict average monthly (June to
September) summer river discharge and bioavailable nitro-
gen loading at each river outlet. The performance of these
16 regressions generally decreases from the beginning to the
end of summer (Table 1), reflecting the increasing tempo-
ral gap (i.e., lead time) between the available spring pre-
dictors and the forecast response. For instance, the regres-
sions explain 78 % and 9 % of the variability in (square root
transformed) Mississippi River bioavailable nitrogen load-
ing in June and September, respectively. The residuals for
all selected models appear evenly distributed, with minimal
heteroscedasticity (Fig. S3.1–S3.4) and mostly weak serial
correlation of residuals (Pearson lag 1 correlations ranging
from –0.02 to 0.35). The predictive variables chosen via ex-
haustive BIC selection include May discharge (QA5 or QM5)
or bioavailable nitrogen loading (LA5 or LM5) in 13 of the

16 models. In other words, high flow and nutrient loading
in May is indicative of high flow and nutrient loading in
summer. However, the most consistent individual predictor
(present in 12 out of 16 regressions) is the Mississippi River
basin precipitation in May (P5), likely due to the hydrologic
lag between rainfall and basin discharge. Note that the cor-
relation between P5 and May discharge is relatively weak
(r = 0.36 for both rivers), while the correlations between P5
with June and July discharge are r = 0.77 and r = 0.66, re-
spectively, suggesting an average basin response time of 1–
2 months. This lag is generally consistent with a previous
study that identified a strong positive correlation between
March–May precipitation and May–June nitrogen flux in the
basin (Donner and Scavia, 2007). Additionally, the strong in-
fluence of lagged watershed precipitation on nitrogen load-
ing has been confirmed for other river basins (Gentry et al.,
2014; Hinsby et al., 2012; Sinha and Michalak, 2016). At
the same time, the regressions for August and September
flow and loading perform particularly poorly in the LOOCV
(R2 < 0.2), indicating they are less robust and have little pre-
dictive capacity relative to the models for earlier months (Ta-
ble 1). Therefore, only the eight regressions for June and
July discharge and bioavailable nitrogen loading are used for
screening and constraining riverine inputs for subsequent hy-
poxia forecasting.

3.2 Forecast skill

After constraining historical riverine inputs (to the 10 most
relevant years, excluding the forecast year), based on the dis-
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Figure 3. Daily hindcasted BWDO (predicted for every summer
day from DMO20, 1985–2016, assuming that the hydrometeorol-
ogy and loading is known throughout the summer) and observed
BWDO (geostatistically estimated from monitoring cruises) versus
forecasted BWDO for western and eastern shelf sections. The diag-
onal line represents the perfect prediction.

charge and loading regressions for each forecast year, the hy-
poxia model (DMO20) is run to obtain daily hypoxia predic-
tions (Fig. 3; top). Over the 32-year record, these pseudo-
forecasts explain 66 % and 64 % of the variability in hind-
casted BWDO (i.e., DMO20 model predictions assuming all
inputs are known throughout the summer) for the western
and eastern sections, respectively. After the transformation
of BWDO to HA, the pseudo-forecast explains 68 % of vari-
ability in hindcasted HA for each section (Fig. S4.1). Overall,
the pseudo-forecast explains 71 % and 77 % of the variability
in hindcasted total shelf-wide HA and mean BWDO, respec-
tively.

Pseudo-forecasts can also be compared to observed (geo-
statistically estimated) BWDO and HA at the times of mon-
itoring cruises (Fig. 3; bottom). The forecasted BWDO fits
moderately well to the observations with an R2 of 0.39 and
0.50 for the western and eastern sections, respectively. When
BWDO is transformed to HA, the pseudo-forecast explains
41 % and 48 % of variability in observed HA in the west-
ern and eastern sections, respectively (Fig. S4.1), which is
similar to the hindcast explanatory power of 46 % and 58 %
(as in DMO20). In comparison, hindcasting studies using
three-dimensional models have generally explained a lower
(27 %–37 %) percentage of the variability in the Gulf BWDO
but at finer spatial resolution (Fennel et al., 2016). To our
knowledge, this is the first time that Gulf hypoxia forecasts
have been rigorously compared to observations across the en-

tire summer season (June–September). Previous studies have
generally focused on assessing forecast performance relative
to the Louisiana Universities Marine Consortium midsum-
mer shelf-wide hypoxia cruises, which typically take place
within a 2-week window beginning in late July (Laurent and
Fennel, 2019; Scavia et al., 2017).

A tighter selection of relevant years for forecast genera-
tion may produce more accurate forecasting results but may
capture less of the true stochasticity in the hydrometeorol-
ogy. If the forecasting approach is revised to include only the
5 most relevant years, the predictive accuracy slightly im-
proves, based on comparisons with hindcasted values of total
shelf-wide HA (the variance explained increases from 71 %
to 73 %), while there is virtually no improvement based on
comparisons with observed HA. At the same time, the uncer-
tainty (standard error) for the population variance increases
by a factor of 1.5 when using 5 years instead of 10 years
(Benhamou, 2018). Therefore, using 10 relevant years ap-
pears to provide a more reasonable balance between predic-
tive accuracy and uncertainty characterization, though this
could be explored further in future research.

Forecasting performance gradually degrades with longer
lead times. The ability of pseudo-forecasts to match DMO20
hindcasts of shelf-wide HA declines by about 50 % (com-
paring R2 values; Fig. 4; top) from June to September due
to increasing uncertainty in riverine and meteorological in-
puts toward the end of the summer season. In comparison,
the ability of forecasts to match actual observations declines
by nearly 70 % (Fig. 4; bottom). Forecasts and hindcasts ben-
efit from the same seasonal patterns inherent to the DMO20
model structure, while observations may deviate from these
patterns due to additional drivers of variability not captured
in the mechanistic formulation. Moreover, the geostatistical
observations have their own uncertainties, depending on the
coverage of each monitoring cruise (Matli et al., 2018).

Our forecast quantifies predictive uncertainty associated
with the Bayesian parameter estimates and residual errors,
summer model inputs, bias adjustment, and transformation
of BWDO to HA (Figs. 5 and S5.1–S5.11). The results in-
dicate that the 95 % IQR for the western section is, on aver-
age, 2.6 times higher than for the eastern section, due to the
greater overall size of the western section (and greater HA)
and the complex effect of both river outfalls (Atchafalaya
and Mississippi) on BWDO in this section (DMO20). Al-
though the forecasts generally follow the shape of the hind-
casts over time, some dissimilarities exist due to the hydrom-
eteorological variability (Fig. 5). The pseudo-forecast cap-
tures the large HA during summer 1993 that was caused
by extremely high May–September river flow and nutrient
loadings (Larson, 1997). Interestingly, however, the pseudo-
forecast in 2009 overpredicts HA in the western section (two
observations are outside of the 95 % IQR), due to unusually
strong westerly summer winds in this year (Turner et al.,
2012). Generally, high wind stress increases water column
reaeration and disrupts stratification (Justić and Wang, 2014;

Hydrol. Earth Syst. Sci., 26, 1131–1143, 2022 https://doi.org/10.5194/hess-26-1131-2022



A. Katin et al.: Temporally resolved coastal hypoxia forecasting and uncertainty assessment 1137

Figure 4. Month-by-month comparison of the daily hindcasted (top) and observed (geostatistically estimated; bottom) shelf-wide HA versus
pseudo-forecasted HA. The diagonal line represents perfect prediction.

Figure 5. Daily pseudo-forecasts of HA for the western and eastern sections in 1993 (a, b) and 2009 (c, d), including the 95 % IQR of the
predictive distribution, distinguishing between (i) parameter, (ii) riverine and meteorological inputs, (iii) mechanistic model residual error,
and (iv) regressions related to transformation of BWDO to HA and bias adjustment uncertainties (shades of gray from lightest to darkest).
The yellow dashed line is the hindcasted estimate, the black dashed line is the 32 year average hindcast, and the orange points and error bars
represent the mean and associated 95 % confidence interval of the (geostatistically estimated) hypoxia observations.
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Figure 6. (a) Box plots represent the daily pseudo-forecasted normalized IQR (IQR/HA), including the uncertainty due to variability in the
parameters, riverine inputs, and meteorology. The red dashed and solid lines show the daily mean HA and (non-normalized) IQR, respectively.
(b) Box plots show 14 d weighted-average-squared wind speed near the western shelf section. Box plots represent the interannual variability
in the results. The center of each box is the median, while the whiskers extend to the extreme value or 1.5 times the IQR of the corresponding
variable (whichever is less).

Obenour et al., 2015), while upwelling westerly winds dis-
perse the river plume offshore, reducing the consequent oxy-
gen demand (Feng et al., 2012; Le et al., 2016). Overall, only
6 % (9 of 149) of the observations of total HA are outside
of the 95 % IQR (Figs. S6.1–S6.8). Also, the geostatistically
estimated 95 % confidence intervals of observed HA always
overlap the forecasted 95 % IQR, except for one observa-
tional cruise in 1988. This discrepancy is caused by anoma-
lously strong summer winds combined with low discharge
and nutrient loading in 1988 (Tables S3.1–S3.2). In general,
these results suggest that the forecasts realistically character-
ize predictive uncertainties.

Our approach also allows for disentangling and quanti-
fying various sources of forecast variance (Fig. S4.2). For
the total HA, the variance associated with stochasticity in
riverine and meteorological inputs is 40 times greater than
variance associated with parameter uncertainty (on average).
Also, the variance associated with these summer data inputs
is more influential in later months, with its contribution to
total variance increasing from 26 % in June–July to 41 % in
August–September. The remaining sources of the forecast
variance (dominated by residual error but also including the
June bias adjustment and transformation of BWDO to HA)
are 1.9 times greater than the variance related to the stochas-
tic data inputs, suggesting limitations in the model structure
or available modeling data (e.g., accuracy or resolution). The
relatively low parameter uncertainty reflects the long calibra-
tion record (currently 1985–2016) and is consistent with the
underlying model’s robust performance in cross validation
(Obenour et al., 2015).

Interestingly, the predictive intervals shown in Fig. 5 do
not clearly increase over the course of the summer. This is

largely because predictive intervals tend to increase with the
increasing predicted hypoxic area, and the hypoxic area tends
to decline after midsummer. If predictive intervals are nor-
malized (i.e., IQR divided by predicted HA), then there is
a clearer increase in uncertainty over the summer (Fig. 6).
The normalized IQRs increase due to the transition from ob-
served to randomly sampled model inputs. The riverine and
meteorological inputs to DMO20 are lagged rolling-window
averages that include mostly observed data (i.e., data prior
to 1 June) at the beginning of the summer and an increas-
ing proportion of randomly sampled historical data there-
after (Sect. 2.1). Also, the regressions for flow and load-
ing were only effective for predicting June and July condi-
tions (Sect. 3.1). For these reasons, the normalized IQR for
pseudo-forecasted HA for June–July is 30 % lower than for
August–September on average (Fig. 6a; box plots). At the
same time, there is a rapid increase in the normalized IQR
during the second week of June. In the model, mean wa-
ter column reaeration is determined by wind speeds over the
preceding 2 weeks (Obenour et al., 2015). Consequently, the
large and highly variable wind speeds in June (Fig. 6B; de
Velasco and Winant, 1996) quickly increase predictive un-
certainties, as these stochastic inputs replace the known wind
speed inputs from May.

3.3 Sensitivity to riverine and meteorological inputs

The results presented in the previous section are for the pro-
posed forecasting approach with known spring loadings, dis-
charge, and winds and with summer riverine inputs con-
strained through the regression projections (i.e., Case 4 in
Sect. 2.5). In comparison, the more conventional Gulf fore-
casting approach, using known spring riverine inputs but with
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Table 2. Explained variance (R2) in hindcasted and geostatistically observed HA by pseudo-forecasts based on the different data input cases.
Here, the term Act indicates actual data for the specific year being forecasted are used, Ran-all indicates that input data are randomly sampled
from the complete historical record, and Ran-sel indicates that riverine input data are randomly sampled from a subset of relevant historical
years based on the regression projections for flow and loading. Spring includes March–May, while summer includes June–September records.
The highest R2 values for each month are highlighted in bold.

C
as

e Data input R2; forecasted vs. hindcasted R2; forecasted vs. observed

Riverine Wind Month Overall Month Overall

Spring Summer Spring Summer Jun Jul Aug Sep Jun Jul Aug Sep

1 Act Ran-all Ran-all Ran-all 0.69 0.38 0.32 0.21 0.56 0.57 0.28 0.28 0.15 0.44
2 Act Ran-all Act Ran-all 0.76 0.56 0.33 0.19 0.60 0.53 0.32 0.28 0.14 0.45
3 Act Ran-sel Ran-all Ran-all 0.73 0.68 0.52 0.36 0.68 0.58 0.39 0.32 0.19 0.49
4 Act Ran-sel Act Ran-all 0.80 0.73 0.54 0.38 0.71 0.54 0.42 0.34 0.17 0.50

unknown wind and summer riverine inputs (i.e., randomly
sampled from the entire historical record; Case 1) explains
only around half of the variability in hindcasted and observed
HA (i.e., 56 % and 44 %, respectively; Table 2). Also, the
performance of Case 1 declines greatly from the beginning
(June) to the end (September) of the summer. The inclusion
of summer riverine records constrained through regression
projections substantially increases the variance explained in
both hindcasted and observed HA (Table 2; Cases 3 and 4).
This improvement in performance is the most notable for
July–September, indicating that the constrained summer in-
puts provide a more accurate determination of water col-
umn stratification and oxygen demand within the biophysical
model. Additionally, the summer-wide average of the nor-
malized IQR for Case 4 is, on average, 22 % lower than that
of the conventional forecasting approach (Case 1).

The addition of actual spring wind data to the conventional
approach (Table 2; Case 2) slightly increases the explained
variance in hindcasted and observed HA by 4 % (i.e., from
56 % to 60 %) and 1 %, respectively. This forecast improve-
ment is most notable in June and July because zonal wind
velocities up to 3 months in advance regulate the transport
of water and nutrients over the shelf (Obenour et al., 2015;
Walker et al., 2005). Interestingly, about a quarter of the
variability in hindcasted June HA remains unexplained, even
when actual spring wind data are included (Table 2; Case 2).
This is consistent with the importance of near-term wind and
discharge inputs in controlling reaeration in the model. It
is also consistent with the uncertainties presented in Fig. 6
and other modeling studies exploring the influence of wind
on hypoxia formation (Forrest et al., 2011; Yu et al., 2015).
Overall, the forecast is only moderately sensitive to the inclu-
sion of actual spring wind velocities (compare Cases 1 to 2
and Cases 3 to 4). However, we anticipate that inclusion of
actual spring wind data may still be important, especially for
years with anomalous wind patterns.

Finally, for the preferred forecasting approach (Case 4)
we examine an alternative way of determining the relevant

years that constrain the distribution of riverine inputs for the
forecast year. If only nitrogen loading regressions are used
to constrain summer inputs (instead of both flow and load-
ing regressions), the explained variability in the hindcasted
total HA drops from 71 % (Table 2; Case 4) to 69 %. This
relatively small drop in the predictive performance is not too
surprising, as monthly nitrogen loading, which is the primary
driver of many hypoxia models (Turner et al., 2006), is highly
correlated with monthly discharge (r = 0.90). However, em-
ploying the discharge regressions (in addition to the loading
regressions) better accounts for the influence of river flow on
stratification and hypoxia formation (Obenour et al., 2012).

3.4 Implications for hypoxia forecasting and fisheries
management

To our knowledge, there is only one hypoxia forecasting
study (i.e., Laurent and Fennel, 2019) with a similar tem-
poral scope to the current study. That study applied three-
dimensional hydrodynamic–biogeochemical model hind-
casts, which are weighted based on comparisons with his-
torical May nitrogen loading only. Other predictive hypoxia
studies have employed both discharge and wind (Forrest
et al., 2011; Testa et al., 2017); however, they lacked the de-
sired temporal resolution of this study. Here, we demonstrate
how projections of summer riverine inputs based on spring
discharge, loading, and watershed precipitation (Sect. 3.1)
can be used to constrain model inputs, substantially improv-
ing hypoxia forecasting skill (Case 4; Table 2). We suggest
that other hypoxia forecasting efforts could also benefit from
such expanded and projected model inputs.

Our approach allows for daily forecasts of BWDO and HA
for two shelf sections throughout the entire summer season.
Generally, results indicate that HA can be forecasted up to
4 months ahead, but predictions for later months should be
treated with increased caution given their higher uncertain-
ties (Fig. 6). Note that the river input regressions only ex-
plain 25 %–30 % of the variability in August nitrogen load-
ings (Table 1), which is a major factor underlying the de-
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crease in forecast skill in late summer. Additional sources
of uncertainty in model inputs may arise from extreme cli-
matic events (e.g., tropical storms and hurricanes), which are
unpredictable at the forecasting timescales considered here.
These storm events have a multifaceted effect on BWDO, po-
tentially reaerating the bottom water column but also provid-
ing additional terrestrially derived or sediment-resuspended
nutrients that may exacerbate hypoxia (Bianucci et al., 2018;
Yu et al., 2015). Therefore, it is not surprising that the
pseudo-forecast can explain only about one-third of the vari-
ability in hindcasted September total HA (Fig. 4). Overall,
future hypoxia forecasting efforts would benefit from im-
provements in weather and riverine forecasting systems that
provide more reliable projections for longer time periods.

The forecasts also explicitly distinguish between different
sources of uncertainty in BWDO and HA (Fig. 5). Most pre-
vious forecasting studies for the northern Gulf (Forrest et al.,
2011; Scavia et al., 2013; Turner et al., 2012), and other
systems like Chesapeake Bay (Testa et al., 2017), implic-
itly represent uncertainty associated with unknown summer
data inputs, sometimes accounting for it in the residual er-
ror. On the other hand, the recent study by Laurent and Fen-
nel (2019) explicitly considers uncertainty due to stochastic
summer riverine inputs but does not include parameter and
residual error uncertainties in the generated forecasts. Thus,
this study provides a more comprehensive uncertainty assess-
ment and allows for management decisions that are robust to
potential extremes (Keeney, 1982; Schuwirth et al., 2019).

Finally, the proposed approach has potential benefits for
short- and long-term environmental planning and fisheries
management. In the northern Gulf, the largest volume (At-
lantic menhaden) and highest valued (Penaeid shrimp) fish-
eries occur during the summer months, concurrent with sea-
sonal hypoxia. These fisheries are highly mobile, and hy-
poxia is known to affect the dynamics of both targeted
species (Craig and Crowder, 2005; Craig and Bosman, 2013)
and fishing fleets (Langseth et al., 2014; Purcell et al., 2017),
with potential implications for the catch (Craig, 2012), eco-
nomic conditions (Smith et al., 2017), and management
(Langseth et al., 2016). However, previous attempts to cor-
relate fishery performance (e.g., catch) with annual measures
of hypoxic severity (e.g., area of hypoxia in late July) have
had limited success (O’Connor and Whitall, 2007; Zimmer-
man and Nance, 2001) because neither the spatiotemporal
dynamics of hypoxia or of the fishery have been considered.
Thus, the proposed daily forecasts can potentially be linked
to fisheries and ecosystem models (e.g., de Mutsert et al.,
2016) to provide more actionable management guidance. In
addition, while this study focuses on a 1 June forecast re-
lease date, consistent with current Gulf forecasting practices,
future modeling enhancements might focus on updating the
forecast over the summer as additional hydrometeorological
data become available. Such updating could potentially ben-
efit real-time, adaptive management of the fishery.

4 Conclusions

In this study, we demonstrate a novel approach for fore-
casting intraseasonal variability in BWDO and HA in the
northern Gulf of Mexico by leveraging a Bayesian mechanis-
tic model. This study generates the first daily hypoxia fore-
casts across the summer season (up to 4 months ahead), with
a comprehensive uncertainty assessment. We show that the
major sources of uncertainty include variability in data inputs
and residual error, while model parameter uncertainty is rel-
atively small. This study also compares how different meth-
ods for specifying riverine and meteorological model inputs
influence forecast accuracy. In particular, we show how con-
straining summer riverine inputs based on spring conditions,
including precipitation over the Mississippi River basin, can
be used to improve the hypoxia forecasting skill. We also
show that inclusion of monitored spring wind data further im-
proves hypoxia forecasts. Together, these enhancements in-
crease the retrospective pseudo-forecast accuracy from 44 %
to 50 % (R2), while reducing forecast uncertainty by 22 %
across summers, relative to the conventional approach using
spring loadings and flows only (with randomly sampled sum-
mer riverine and spring–summer wind records). Thus, the
forecasting system developed here provides an enhanced ca-
pacity to inform natural resources management in hypoxic
coastal systems.
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